

Challenging "Buy a New Program" Thinking

3

Learning Outcomes: What are Spotlight Organizations Doing?

1. Operationalizing a small number of Specific Instructional Goals

Getting Specific about the Aim

- Connect. Algorithms, concepts, to real-world applications
- Justify. Communicate and justify mathematical thinking
- **Solve**. Challenging math problems that extend beyond rote application of algorithm

- 1. Operationalizing a small number of Specific Instructional Goals
- 2. Explicating the Causal Connections

Theory of improvement: Driver Diagram

- 1. Operationalizing a small number of Specific Instructional Goals
- 2. Explicating the Causal Connections
- 3. Creating Evidence needed to Guide Improvement Effort

Measure Practices that Matter

- 1. Are teachers, weekly, studying the lessons in teams with a content expert?
- 2. Are teachers reinforcing their learning by doing the student work themselves?
- 3. Are teachers rehearsing lessons and receiving feedback prior to teaching?

Learning Outcomes: What are Spotlight Organizations Doing?

- 1. Operationalizing a small number of Specific Instructional Goals
- 2. Explicating the Causal Connections
- 3. Creating Evidence needed to Guide Improvement Effort
- 4. Wondering, "Have we got it right?"

© 2018 Carnegie Foundation for the Advancement of Teaching. All rights reserved.

11

Theory of Practice Improvement

- 1. Operationalizing a small number of Specific Instructional Goals
- 2. Explicating the Causal Connections
- 3. Creating Evidence needed to Guide Improvement Effort
- 4. Wondering, "Have we got it right?"
- 5. Relentlessly focusing on Variation in Performance

Charting the Progess of Every Child Over Time

Seeing the Variation in Instructional Time

- + 18 of 22 teachers improved
- + 50% of teachers met the aim

Seeing the Variation in the Quality of Learning Environments

- + All teachers improved
- + 84% of teachers met the aim (>3.25)

- 1. Operationalizing a small number of Specific Instructional Goals
- 2. Explicating the Causal Connections
- 3. Creating Evidence needed to Guide Improvement Effort
- Wondering, "Have we got it right?"
- 5. Relentlessly focusing on Variation in Performance
- 6. Aligning the work of Everyone Involved

- 1. Operationalizing a small number of Specific Instructional Goals
- 2. Explicating the Causal Connections
- 3. Creating Evidence needed to Guide Improvement Effort
- 4. Wondering, "Have we got it right?"
- 5. Relentlessly focusing on Variation in Performance
- 6. Aligning the work of Everyone Involved
- Organizing a Hub to sustain Networked Social Learning

Three Domains of Knowledge

A Hub of diverse expertise to support effective and lasting instructional improvements.

21

Diverse expertise coming together

23

... and Finally "Why a science?"

- Formally this a scientific practice and a scientific community
- Empowering educational professionals
- Demonstrating efficacy-in-action as a field
- Bridging the Research–Practice Gap from the practice side

24